• Guangdong Innovative

Reliable Supplier Synthetic Fiber Degreasing Agent - 33848 Moisture Wicking Agent – Innovative

Reliable Supplier Synthetic Fiber Degreasing Agent - 33848 Moisture Wicking Agent – Innovative

Short Description:


Product Detail

Product Tags

Related Video

Feedback (2)

Guangdong Innovative Fine Chemical Co., Ltd., founded in 1996, is a professional high-tech company with R&D, manufacturing, sales and service in the textile and dyeing auxiliaries industry. It provides pre-treatment, dyeing & printing and finishing auxiliaries to customers from the domestic market, South and Southeast Asia. The company is located in Shantou, Guangdong Province of China covers an area of about 40 acres and is the leading textile auxiliaries supplier in China. The second manufacturing base covering an area of about 40 acres in the Fine Industry Park of, Sihui City was established in order to provide customers with better service. Dispersing Agent , Spandex Sequestering Agent , Cotton Penetrant , Defoaming agent is mainly applied in each dyeing and printing process to rapidly eliminate foams or prevent foams.
Reliable Supplier Synthetic Fiber Degreasing Agent - 33848 Moisture Wicking Agent – Innovative Detail:

Features & Benefits

  1. Excellent and durable hydrophilic property, moisture wicking property and antistatic property.
  2. Imparts fabrics soft and fluffy hand feeling.
  3. Dust-proof. Easy for removing dirt.
  4. Makes fabrics better for wearing and using.

 

Typical Properties

Appearance: Colorless turbid fluid
Ionicity: Nonionic
pH value: 6.5±1.0 (1% aqueous solution)
Solubility: Soluble in water
Content: 4%
Application: Polyester fibers

 

Package

120kg plastic barrel, IBC tank & customized package available for selection

 

TIPS:

Chemical and Physical Properties of Textile Fibers

All textile fibers have certain physical and chemical properties that make them suitable for use in yarns and fabrics. These fiber properties carry over, in varying degrees, to yarn and fabric. Infinite research, experimentation, and skill have been, and still are being, devoted to studying, manipulating, and supplementing the properties of fibers to achieve desired results in yarn, fabric, and clothing. These efforts may extend even to the creation of certain properties or to the elimination of undesirable characteristics.

 

Specific Gravity

The relative densities of textile fibers may be compared by means of specific gravity values, i.e, the ratio of the mass of material to the mass of an equal volume of water. Articles made from fibers low in specific gravity are lighter in mass per unit of volume than are those containing a denser fiber.

Specific gravity is important in the processing of fibers and in the designing of fabrics. Low specific gravity is one of the attributes that make it possible to have high bulk and light weight in the textured yarns.

 

Strength

Tensile strength is the ability of a material to withstand tension. It is expressed in terms of the amount of force required to break a fiber, yarn or fabric of a given cross-sectional area (pounds per square inch). In the case of fibers or yarns, the strength is usually measured as tenacity and is expressed in terms of force per unit of linear density, i.e., grams per denier. In the case of fabrics, strength may be expressed as breaking strength (breaking load) which is the resistance to rupture by tension, i.e., pounds.

Important as the tenacity of fibers is to the completed yarn or fabric, the carry-over contribution of fiber strength to the completed yarn or fabric will also depend on such factors as fiber length, fineness, and yarn twist, in addition to fabric construction. Yarn size and fabric construction being equal, the stronger fiber will produce the stronger fabric. However, low tensile strength of a fiber can be compensated for in construction of yarn and fabric and in finishing processes. Wool is an example of a comparatively weak fiber that can be made into strong and durable fabrics if enough fibers are used to make a comparatively heavy fabric. Higher fiber strength does allow the construction of a greater variety of fabric weights and designs.

 

Wet Strength

Wet strength for fibers is expressed in the same units discussed above under Strength.

Cotton, linen and ramie are outstanding fibers in that they gain in strength when wet. This property makes them relatively easy to launder. Silk and wool decrease in strength when wet.

Among the man-made fibers, the cellulosics and cellulose acetates—-rayon, acetate, and triacetate—-all show a considerable decrease in strength when wet. This fact should be considered in the care and handling and particularly in the cleaning of these fabrics. The man-made fibers—-nylon, the acrylics, and the polyesters—-generally maintain substantially the same strength, whether wet or dry. This property is due to the fibers’ low moisture regain and hygroscopicity (that is, the ability of the fibers to absorb and retain moisture).

 

Moisture Regain

Most textile fibers absorb some moisture from the surrounding atmosphere. The amount absorbed is referred to as the fiber’s moisture regain. This property is extremely important in manufacturing, dyeing and finishing processes.

While there appears to be a relationship between the moisture regain of the fiber and the maximum amount of water which a fabric can hold, yarn and fabric constructions play much more important parts in this property than does fiber content. For example, a bulky acrylic sweater may be much slower to dry than a medium-weight cotton fabric. In general, however, fibers with low moisture regains will show small or no differences in properties such as strength and elasticity when they become wet.

Moisture absorption is related to ease of dye-ability and to freedom from the buildup of static electricity. It also plays a part in the comfort of clothing made from the various fibers. The high ability of wool to absorb moisture from the body or the atmosphere accounts for much of its comfort. Manufacturing processes such as anti-static finishes, are applied to fibers of low moisture regain to help them achieve some of the properties of fibers that have natural moisture regain.

 

Extensibility, Elasticity, and Abrasion Resistance

Extensibility is the property of a material which permits it to be extended or elongated when force is applied. Elasticity is the property by virtue of which a material recovers its original size and shape immediately after removal of the stress causing deformation. Fibers are complex in their extension and elastic properties.

fiber’s ability to extend and its ability to return to its original size and shape when the load is removed, are of extreme importance in considering such end-use requirements as abrasion-resistance, wear-resistance, wrinkle-resistance, shape-retention, and resilience.

Nylon is an outstanding fiber because it exhibits high strength as well as high extension. Because it maintains these properties in repeated stressing, nylon has very high abrasion-resistance. Wool’s ability to extend under low loads and to return to its original dimension upon load removal are some of the reasons for its excellent wear-resistance. Glass is a good example of a fiber which is outstanding in its high strength but because it is so inextensible there are severe limitations to its use. Fibers with very low elongations (such as glass) usually have very poor resistance to abrasion in the flexed or bent state.

Elasticity helps fabrics to confirm to specific contours of the body and to maintain their original shape in use and wear. The elastic recovery of a fiber is dependent upon how much it is stretched, how long it is held in the stretched state, and the length of time is has to recover. Most fibers have very high recovery values when stretched only one or two percent but have less complete recovery when stretched four or five percent. The fit of nylon and silk hose results from inherent elastic recovery of the fibers.

Fibers with low elasticity (cotton and linen, for example) wrinkle easily in their normal state. For many end-uses, therefore, fabrics of these fibers are treated chemically to improve their crease- and wrinkle resistance. Cotton may also be made into crepe yarns, or woven into fabrics such as seersucker or terry cloth, in which the weave hinders or disguises wrinkling.


Product detail pictures:

Reliable Supplier Synthetic Fiber Degreasing Agent - 33848 Moisture Wicking Agent – Innovative detail pictures


Related Product Guide:

Dyeing auxiliaries mainly include leveling agent, soaping agent, fixing agent, dispersing agent, resist agent and anti-migration agent, etc. Reliable Supplier Synthetic Fiber Degreasing Agent - 33848 Moisture Wicking Agent – Innovative , The product will supply to all over the world, such as: kazan, Bulgaria, Jersey, Napping Agent 30317 is weak cationic and light yellow silicone emulsion. It can be applied in napping and stone napping finishing process. It is suitable for fabrics of T/C and CVC, etc., which can make fabrics soft, exquisite and fluffy. It is highly stable and low yellowing textile finishing auxiliary. It can impart fabrics excellent hydrophilicity. Napping Agent 30317 has low yellowing and low shade changing. It does not influence on color fastness.
  • The factory can meet continuously developing economic and market needs, so that their products are widely recognized and trusted, and that's why we chose this company.
    5 Stars By Annabelle from Malawi - 2018.09.08 17:09
    The quality of the products is very good, especially in the details, can be seen that the company work actively to satisfy customer's interest, a nice supplier.
    5 Stars By Olive from Belgium - 2018.07.27 12:26
    Write your message here and send it to us