• Guangdong Innovative

76066 Silicone Softener (Soft, Smooth & Plump)

76066 Silicone Softener (Soft, Smooth & Plump)

Short Description:

76066 is a modified silicone finishing agent.

It can be applied in finishing process for fabrics of cotton, polyester/ cotton, polyester/ viscose fiber, cotton/ spandex, cotton/ nylon and Modal, etc., which makes fabrics soft, smooth and plump.


Product Detail

Product Tags

Features & Benefits

  1. Excellent stability, compatibility and mechanical stability. Stable in alkali and electrolyte.
  2. Can improve the sewing performance, tensile strength and resilience rebound of fiber.
  3. Extremely little influence on whiteness, color shade and color fastness of fabrics.
  4. Can be used together with other softener and finishing agent in same bath.


Typical Properties

Appearance: Transparent fluid
Ionicity: Weak cationic
pH value: 6.0±0.5 (1% aqueous solution)
Solubility: Soluble in water
Application: Cotton, polyester/ cotton, polyester/ viscose fiber, cotton/ spandex, cotton/ nylon and Modal, etc.



120kg plastic barrel, IBC tank & customized package available for selection




Silicone softeners

Silicones were classified as a separate class of man-made polymers derived from silicon metal in 1904. They have been used to formulate textile softening chemicals since the 1960s. Initially, unmodified polydimethylsiloxanes were used. In the late 1970s, the introduction of aminofunctional polydimethylsiloxanes opened new dimensions of textile softening. The term ‘silicone’ refers to artificial polymer based on a framework of alternating silicon and oxygen (siloxane bonds). The larger atomic radius of silicon atom makes the silicon–silicon single bond much less energetic, hence silanes (SinH2n+1) are much less stable than alkenes. However, silicon–oxygen bonds are more energetic (about 22Kcal/mol) than carbon–oxygen bonds. Silicone also derives from its kitone-like structure (silico–ketone) similar to acetone. Silicones are free of double bonds in their backbones and are not oxocompounds. Generally, the silicone treatment of textiles consists of silicone polymer (mainly polydimethylsiloxanes) emulsions but not with the silane monomers, which may liberate hazardous chemicals (e.g. hydrochloric acid) during treatment.

Silicones exhibit some unique properties including thermal oxidative stability, low temperature flowability, low viscosity change against temperature, high compressibility, low surface tension, hydrophobicity, good electric properties and low fire hazard because of their inorganic–organic structure and the flexibility of the silicone bonds. One of the key features of silicone materials is their effectiveness at very low concentrations. Very small amounts of silicones are required to achieve the desired properties, which can improve the cost of textile operations and ensure a minimum environmental impact.

The mechanism of softening by silicone treatment is due to a flexible film formation. The reduced energy required for a bond rotation makes the siloxane backbone more flexible. The deposition of flexible film reduces interfibre and interyarn friction.

Thus the silicone finishing of textile produces an exceptional soft handle combined with other properties such as:

(1) Smoothness

(2) Greasy feel

(3) Excellent body

(4) Improved crease resistance

(5) Improved tear strength

(6) Improved sewability

(7) Good antistatic and antipilling properties

Because of their inorganic–organic structure and the flexibility of the siloxane bonds, silicones have the following unique properties:

(1) Thermal/oxidative stability

(2) Low-temperature flowability

(3) Low change of viscosity with temperature

(4) High compressibility

(5) Low surface tension (spreadability)

(6) Low fire hazard

Silicones have very wide application in textile processing, such as fiber lubricants in spinning, high-speed sewing machinery, winding and slashing, as binders in nonwoven manufacturing, as antifoam in dyeing, as softeners in print paste, finishing and coating.

  • Previous:
  • Next:

  • Write your message here and send it to us